Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yan Yu, Chang Liu and Xingyu Yang*

Department of Chemistry, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China

Correspondence e-mail:
yuyan801206@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.120$
Data-to-parameter ratio $=15.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5,5-Dimethyl-2-oxo-4-phenyl-2-(2-pyridyl-amino)-1,3,2-dioxaphosphorinane

In the crystal structure of the title compound, $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$, molecules are linked by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming rings with an $R_{2}^{2}(8)$ motif; $\pi-\pi$ stacking also contributes to the packing.

Comment

2-Chloro-1,3,2-dioxaphosphorinane is an important heterocycle, and its derivatives show good biological and pharmaceutical activity (Wolter \& Hans, 1985; Jacobson \& Nguyan, 1991; Rui et al., 1997; Yang et al., 1991); they also exhibit good fungicidal or antitumor activities. We report here the crystal structure of the title compound, (I).

(I)

The structure of (I) (Fig. 1) shows that the P atom of the oxodioxaphosphorinane ring carries a pyridylamine substituent, with a phenyl substituent at C7 and two methyl groups on C8. Overall, the oxaphosphorinane ring adopts a chair conformation. In the crystal structure, $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link neighboring molecules, forming inversion-related rings in an $R_{2}^{2}(8)$ motif (Fig. 2) (Bernstein et al., 1995). The distance between the inversion-related $\mathrm{C} 1-\mathrm{C} 6$ ring centroids $\left(C g \cdots C g^{\mathrm{i}}\right)$ is 3.5921 (13) \AA [symmetry code: (i) $\left.2-x,-y,-z\right]$,

Figure 1
The structure of (I), showing the numbering scheme, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

Received 27 October 2005 Accepted 8 November 2005 Online 26 November 2005
suggesting that significant $\pi-\pi$ interactions further stabilize the structure.

Experimental

The title compound, (I), was prepared according to the procedure of Maier (1976); suitable crystals were obtained by vapor diffusion of dioxane into a dimethylformamide solution at room temperature (m.p. 515 K). IR ($\mathrm{KBr}, \nu \mathrm{cm}^{-1}$): 3147, 1597, 1469, 1221, 1043, 1007, 971; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 7.33(s, 5 \mathrm{H}), 8.30-6.90(m, 4 \mathrm{H}), 9.09(s$, $1 \mathrm{H}), 4.45-3.95(d d, 3 \mathrm{H}), 1.16(s, 3 \mathrm{H}), 0.77(s, 3 \mathrm{H})$; analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}: \mathrm{C} 60.37 \mathrm{H} 6.02, \mathrm{P} 9.73 \%$; found: C 60.21, H 6.12, P 9.60\%.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{P}$
$M_{r}=318.30$
Monoclinic, $P 2_{1} / c$
$a=10.3775$ (9) \AA
$b=7.4406$ (7) A
$c=20.6390(18) \AA$
$\beta=96.231(2)^{\circ}$
$V=1584.2$ (2) \AA^{3}
$Z=4$
$D_{x}=1.335 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3123 reflections
$\theta=2.6-27.8^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless $0.30 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.946, T_{\text {max }}=0.982$
23120 measured reflections

Refinement

Refinement on F^{2}
Refinement on
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.120$
$S=1.12$
3107 reflections
204 parameters
3107 independent reflections 2913 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-12 \rightarrow 11$
$k=-7 \rightarrow 9$
$l=-25 \rightarrow 24$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0529 P)^{2}\right. \\
& \quad+0.8267 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

independent and constrained refinement

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	$0.85(1)$	$1.98(1)$	$2.823(2)$	$171(2)$
$\mathrm{C} 10-\mathrm{H} 10 B \cdots \mathrm{~N} 2$	0.96	2.57	$3.522(3)$	174

[^0]

Figure 2
A view of the crystal packing. Hydrogen bonds are shown as dashed lines.

The coordinates of amino atom $\mathrm{H} 1 A$ were refined freely with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{N})$. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic or methylene and $1.5 U_{\mathrm{eq}}(\mathrm{C})$ for methyl H atoms.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Science Foundation of Wuhan City (grant No. 20021002052).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART, SAINT and SADABS (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Jacobson, R. M. \& Nguyan, L. Tu. (1991). Patent Appl. EP 437335.
Maier, L. (1976). Metal Org. Chem. 6, 133-155.
Rui, L. S., Guang, F. Y. \& Wei, S. M. (1997). Chin. Chem. Lett. 8, 855-858.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Wolter, T. H. \& Hans, W. (1985). J. Org. Chem. Lett. 50, 4508-4514.
Yang, H. Z, Wu, Y. \& Zhang, Y. F. (1991). Chem. J. Chin. Univ. 12, 44.

[^0]: Symmetry code: (i) $-x+1,-y,-z$.

